
Appears in Proceedings of 12th International Florida AI Research Symposium (FLAIRS-99), Orlando, FL,
May 1999, AAAI Press, Menlo Park, CA, pp. 286-292.

Universal Access to Mobile Computing Devices
through Speech Input

Bill Manaris
Computer Science Department

University of Southwestern
Louisiana

manaris@usl.edu

Valanne MacGyvers
Psychology Department

University of Southwestern
Louisiana

macgyvers@usl.edu

 Michail Lagoudakis
 Department of Computer Science

Duke University
mgl@cs.duke.edu

Abstract

This paper presents results on a user interface model
for providing universal access to mobile computing
devices. The model uses a continuous speech
understanding engine to provide access to a virtual
keyboard and mouse through speech input. This
research has been targeted towards users with
permanent motor disabilities. However, these results
also apply to able -bodied users with temporary, task-
induced motor disabilities, such as users performing
alphanumeric data entry through a cellular phone
keypad. The proposed solution might complement (or
even replace) miniaturized keyboards and other
physical keyboard alternatives, such as stylus-type
"soft" keyboards. Since it only requires a microphone
(and perhaps a speaker for feedback) which are already
included in many mobile devices, it may allow such
devices to shrink considerably in size, as alphanumeric
input is no longer bound to a physical area. The paper
describes the underlying architecture employed by the
system. It presents empirical results addressing the
effectiveness of this interface over alternative input
methods for alphanumeric data entry. Finally, it
discusses implications and future directions.

Introduction

An effective user interface has to address several issues.
Initially, it needs to help the user develop an accurate
conceptual model of the application domain; if the user
already has such a model, due to earlier experience with the
application domain, the interface needs to comply with and
perhaps build on this model. Then, it has to provide an
effective mapping between the user's conceptual model and
the underlying application. Finally, it should make good use
of existing metaphors, whenever possible, to improve
learning and retention as well as overall user satisfaction.

User interface developers for mobile computing devices
face an additional problem: Size and weight become major
constraints that may affect the marketability and viability of
a platform. Consequently, the developer has to find
resourceful solutions for incorporating the necessary
input/output devices. Since most mobile devices attempt to
provide a user interface that allows at least entry of
alphanumeric characters, much of the available device area
is consumed. Conceptually, this area corresponds to a two-
dimensional matrix whose resolution depends on the
application. This matrix maps the user's motor control to
alphanumeric characters. Since this mapping is not always
one-to-one, software may be used to provide for
disambiguation (e.g., Tegic's T9 software). (Comerford
1998). Examples include miniaturized keyboards in cellular
telephones and hand-held PCs, as well as stylus-based
"soft" keyboards (see Figure 1). Some devices use time as
a third dimension to further reduce the required matrix area,
as in the PalmPilot handwriting recognition device. The
physical area used for alphanumeric input is sometimes
used for visual feedback, as in the case of touch-sensitive
screens (e.g., PalmPilot, and HP 300).

The keyboard (physical or "soft") is not the most effective
input device for every task. There exist many tasks that can
be better performed through alternate modalities, such as
point-and-click and speech. Nevertheless, since the
keyboard is a de facto "universal" interface for general
computing devices (i.e., the typewriter computer metaphor),
it is a requirement on any mobile device that supports
access to general computing. For instance, using a cellular
phone with a keyboard interface a user can send e-mail or
enter data into a spreadsheet stored on a remote PC.

Copyright © 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1. Various mobile computing devices
(left to right: NOKIA 9110, Hewlett Packard 300 Series, 3Com

PalmPilot).

This keyboard interface requirement renders mobile devices
at least as large as the size of the device they employ for
alphanumeric data entry. Given Moore's law1, very soon
this requirement will become a major obstacle in the
continued reduction of mobile device size. In other words,
as long as alphanumeric input requires physical device area,
potential size (and weight) reduction of mobile devices is
rigidly constrained.

A Virtual Keyboard

Goldstein et al. (1998) propose an innovative solution for
removing the constraint imposed by the keyboard interface.
Their solution involves a virtual keyboard accessible
through electromyography (EMG) sensors. These sensors
perceive the muscular contractions of the user's fingers as
(s)he is "typing" on any flat surface. Keyboard characters
are assigned to each finger using the traditional placement
of fingers on a QWERTY keyboard. Information as to
which finger was pressed is sent using wireless signal
transmission to the mobile device, e.g., cellular phone.
Since input is one-dimensional (e.g., finger "1" was pressed,
then finger "6", followed by finger "2"), the system uses a
language model to disambiguate among alternative keys
accessible by each finger.

One advantage of this solution is that any flat surface will
do. However, it presupposes that such a surface is readily
available and that there is enough "elbow room" to utilize it
– obviously, this would not be the case in a crowded bus,
for example, or while walking in the street. It also
presupposes that the user is an expert "blind" typis t on a
QWERTY keyboard. Finally, it does not handle cursor
movements, concurrent key presses, as well as point-and-
click operations. However, its major contribution is that it
completely disassociates alphanumeric input from the
physical device area. Thus it eliminates keyboard-based
constraints on physical size requirements of mobile devices.

SUITEKeys2 User Interface

The solution proposed herein is to provide a speech user
interface that models a virtual keyboard and mouse. This
interface, named SUITEKeys, provides an one-to-one
mapping between user utterances and keyboard/mouse-

1 Moore's law states that the power/area ratio of integrated
circuits doubles every 18 months. It is suspected that, as
integrated circuits begin growing in the third dimensio n,
this law will no longer hold. This is because, strictly based
on geometric principles, the power/volume ratio should
grow much faster than the power/area ratio of traditional 2D
designs.
2 SUITEKeys is an application of research on Speech
Understanding Interface Tools and Environments.

level operations, such as pressing/releasing a key and
moving the cursor a certain distance/direction. Thus, it
provides access to the complete functionality of any
computing device (mobile or not) similarly to a physical
keyboard/mouse interface.

SUITEKeys is based on a speech understanding
architecture that encapsulates a hybrid language model
consisting of statistical and symbolic components. It
accepts regular and military alphabet pronunciation. It
supports additional features such as selection from a list of
frequently entered words, and the ability to switch into a
non-active (sleep) state (so that another, task-specific
speech application may be used). The list of frequently
entered words is based on techniques for statistical word
prediction that have been shown to speed up word data
entry (Copestake 1996; Tegic Communications, Inc.).
Finally, it supports modeling of task-specific activities, such
as dialing a number, managing e-mail communication, and
maintaining verbal macros for commonly used operations.

Similarly to the EMG-sensor solution discussed above, it
disassociates keyboard input from the physical area of the
mobile device, and thus eliminates constraints on size
reduction. Additionally, in the case of devices that already
have a microphone and speaker (e.g., cellular phones,
personal digital assistants, palm-held PCs), it requires no
additional physical apparatus. One drawback of this
solution is that it may not be appropriate in public places
due to privacy issues. However, this is also true for
traditional use of cellular telephones, which are very prolific
in spite of this drawback due to the other advantages they
offer, such mobility and reduced size.

SUITEKeys originated from research targeted to users with
motor disabilities (Manaris and Harkreader 1998). However,
it soon became clear that it also applies to users with
temporary, task-induced motor disabilities. This includes
users involved in tasks that "monopolize" hand motor
control (such as driving a car or servicing a jet engine). It
also includes users performing alphanumeric data entry on
mobile devices. As the dimensions of traditional input
devices shrink, the motor skills of the user become less
effective, almost inadequate. For instance, studies show
that users may experience severe reduction in data entry
speed (wpm) when switching from a regular QWERTY
keyboard to a mobile device keyboard alternative. One
study reports a 4:1 reduction on a stylus-based "soft"
keyboard (PalmPilot) (Goldstein et al. 1998). Another study
reports a 3:1 reduction on a telephone keypad (MacKenzie
et al. 1998).

System Architecture

The architecture of the SUITEKeys user interface is based
on SUITE, a framework for developing speech

understanding interfaces to interactive computer systems
(Manaris and Harkreader 1997). As shown on Figure 2, the
system architecture integrates speech recognition and
natural language processing modules. When used with
mobile devices that are equipped with microphone and
speaker, such as cellular phones and personal digital
assistants, it requires no additional hardware. The complete
system is encapsulated within the mobile device and runs
on top of the device's operating system like any other
application.

The architecture consists of knowledge-base and
processing components. These are organized in a pipelined
fashion for converting user utterances to the corresponding
instructions for the mobile device operating system. These
components are described in the following sections.

Dialog Management

The dialog manager encapsulates a multi-layered dialog
architecture (Agarwal 1997; Jönsson 1997). This
architecture is modeled as a dialog grammar containing
dialog states and actions. The top grammar layer consists
of domain independent states, whereas the lower layers
consist of domain specific states. Each rule represents an
AND/OR graph. AND nodes represent dialog states that
need to be satisfied sequentially, whereas OR states
represent alternative dialog paths. Additionally, each state
may be associated with a specific language model (e.g.,
lexicon, grammar) which may help focus speech
understanding, thus increasing accuracy. Actions
associated with dialog states may be performed before a
state is visited (pre-actions), or after a state is visited (post-
actions). Pre-actions may be used as preconditions, i.e., if
the action fails, the associate dialog state is not explored.
Post-actions may be used to maintain knowledge about the
interaction as well as guide other processing components.

A focus structure is provided to help interpret referents
(e.g., "this", "it") as well as other context -dependent
phenomena. This focus structure holds a dialog state's
focal parameters and can be accessed by the state's actions.
The focus structure of a new dialog state is initialized using
the focus structure of the immediately preceding state. This
accounts for most context -dependent utterances (Jönsson
1997).

This model supports mixed-initiative dialogs, in that either
the system or the user can initiate a (sub)dialog at any point
during interaction (Agarwal 1997). This is accomplished by
checking the user input against the upper-layer of the
dialog grammar, and/or against a collection of task-specific,
user-interrupt dialog states. Mixed-initiative dialogs are
supported by a set of actions for pushing/popping a dialog
state, starting a new dialog, or ending the current dialog
state. The model includes a dialog stack whose size may be

limited to accommodate memory constraints on mobile
devices. Additionally, appropriate verbal prompts may be
constructed to help the user develop a conceptual model of
the current dialog state, e.g. "You have new e-mail. Would
you like to read it?" (Yankelovich 1998). Finally, this
module handles exceptions/errors that are raised by other
components. In mobile devices with limited (or non-
existent) displays, it may use the speech generator to
provide feedback to the user, if necessary.

Speech Processing

Originally speech processing was performed through a
neural-network based phoneme probability estimator
(Manaris and Harkreader 1997). This accepted a continuous
stream of input feature vectors and produced a phoneme
probability matrix that was given to a Viterbi process. This
process generated the N-best hypotheses as to what
sequences of phonemes had been spoken. Due to the
dramatic evolution in continuous speech processing
engines within the last two years, our architecture now
implements the Microsoft Speech API (SAPI). Thus it can
support any SAPI-compliant engine. Currently, we use the
NaturallySpeaking SDK provided by Dragon Systems
(Dragon NaturallySpeaking SDK).

Lexical Analysis

Lexical processing is performed through a dictionary of
lexemes (words supported in the application domain). Each
dictionary entry defines a lexeme in terms of its
syntactic/semantic category as well as additional linguistic
or extra-linguistic information. For example,

S
U

IT
E

K
eys

K
n

ow
le

d
ge

 B
as

e
M

an
ag

er D
ia

lo
g

M
an

ag
er

K
n

ow
le

d
ge

 B
as

e

Mobile Device User

Speech Processor

Lexical Analyzer

Parser

Code Generator

Pragmatic Analyzer

Operating System of
Mobile Computing

Device

S
p

ee
ch

G
en

er
at

or

Figure 2. SUITEKeys Architecture

"go" : ([GO-VERB] {other info})
"to" : ([TO-PREP] {other info})
"sleep" : ([SLEEP-VERB] {other info})
"b" : ([B-LETTER] (homophones b p) …)
"bravo" : ([B-LETTER] {other info})
"d" : ([D-LETTER] (homophones d t) …)

This process allows for modeling of homophones (lexemes
that sound alike). For instance, in the SUITEKeys domain,
there exist several lexemes that can be easily confused by a
speech engine (such as "b" and "p", and "d" and "t"). This
is not necessarily a shortcoming of the speech engine, as
these lexemes are easily confusable by humans as well –
hence the invention of the military alphabet.

Since speech engines are normally not customizable to
resolve ambiguities at the level of individual letters, we
provide a statistical disambiguation algorithm based on
overlapping trigrams. This is similar in function to the
algorithms used by the T9 software (Tegic) and Goldstein et
al. (1998). Specifically, trigrams are extracted from textual
units (a sequence of tokens delimited by whitespace
characters) by moving a "window" of three characters
along a textual unit (Adams and Meltzer 1993). For each
possible trigram, the dictionary includes the probabilities of
its occurrence within different positions in a textual unit.
For instance,

"abc" :([TRIGRAM] (probabilities (1 .02)
 (3 .05) (7 .0023) ...)

For each textual unit in the input, the algorithm cycles
through all trigrams (starting with the first) keeping track of
position within the textual unit. It replaces each character c
with its set of homo phones ch. For example, ("pat") should
be replaced by (("b" "p") ("a") ("d" "t")). From this set of
potential trigrams, e.g., ("bad" "bat" "pad" "pat"), it picks
the most probable trigram given the trigram's position in the
textual unit and uses it to construct the disambiguated
textual unit.

Other Components

The SUITEKeys architecture incorporates the following
additional components. Due to space limitations, only an
overview is given This is because these components are
either traditional in nature and/or are described elsewhere
(Manaris and Dominick 1993; Manaris and Harkreader
1997):

Parser: This is a left-to-right, top-down, non-deterministic
parser. It allows for multiple parse trees, thus providing for
ambiguity handling at the semantic level. It incorporates
semantic actions for constructing semantic interpretations
of user input.

Pragmatic Analyzer: This module further refines semantic
interpretations produced by the parser using predicate-

calculus logic constraints. These constraints are dynamic,
in that they may be updated as the result of an action
originating from other components such as the parser, error
handler, and dialog manager.

Code Generator: This module converts semantic
interpretations to low-level code understood by the
operating system of the mobile device.

Knowledge-Base Manager: This module coordinates
interaction of other components with the SUITEKeys
knowledge base.

Speech Generator: This module provides primitives for text -
to-speech conversion. It is supported by the SAPI-
compliant speech engine.

SUITEKeys Prototype

The SUITEKeys prototype is being developed as an
interface to the Microsoft’s Windows®95 and NT 4.0
operating systems. It is currently implemented in Visual
BASIC, Visual C/C++, and LISP using the
NaturallySpeaking SDK. Each component is either an
ActiveX control or a dynamic link library (DLL). This
allows objects written in one ActiveX-aware language to
communicate with objects written in a different ActiveX-
aware language. Languages that support ActiveX objects
include Microsoft Visual Basic, Microsoft and Borland
implementations of C++, Microsoft Java 6.0 , and Borland
Delphi. Once the prototype is refined, the next step will be
to port it to Windows CE® which is supported by a
multitude of mobile devices.

Usability Evaluation

This section reports on two experiments designed to assess
the following hypothesis: Speech input as provided by
SUITEKeys is an effective input modality for motor-
challenged users.

Pilot Study

The first experiment served as a pilot study to help refine
the SUITEKeys functional requirements, as well as assess
the methodology for the second, full-scale evaluation
study. In this study, subjects where asked to type in a
short paragraph on a Windows95 platform using two
alternative input modalities: (a) their preferred input
modality, and (b) a Wizard-of-Oz prototype3 of SUITEKeys.
The use of a Wizard-of-Oz prototype allowed as to

3 A Wizard-of-Oz experiment involves a human acting as a
hidden interface between the user and the computer; the
human is simulating the functionality of the system under
study.

• constrain subjects to the application domain,

• provide freedom of expression, and

• evaluate and refine application requirements, such as
vocabulary, grammar, interaction patterns, design of
prompts/feedback, as well as the overall concept
effectiveness (Yankelovich 1998).

This study was carried out in the fall of 1997 and involved
three motor-disabled users as subjects. To collect data for
analysis, we captured the computer display and room audio
on video, logged keyboard and mouse events, and
examined the text files created by the subjects. The results,
although not statistically significant, supported the
hypothesis – overall, subjects performed better using
speech, in terms of task completion rate, typing rate, and
error rate. For a detailed description of this study and its
results, see (Manaris and Harkreader 1998).

Main Study

The follow-up, full-scale study was carried out in the
summer of 1998. It involved 43 psychology students who
participated as part of their course requirements. In this
study we compared one of the standard input modalities,
the mouthstick , with the SUITEKeys Wizard-of-Oz
prototype. Subjects where asked to type in and save a one-
paragraph document in each condition. Two linguistically
equivalent paragraphs were used as sources (one in each
condition). Although the subjects where not permanently
disabled, a motor challenge was introduced through the use
of a handstick. Specifically, subjects where asked to hold
an unsharpened pencil with both hands, having hands held
under the chin, thus simulating a mouthstick or single-digit
typing.

We assume that the handstick effectively simulates a range
of alternative input modalities that have the following
characteristics: (a) decrease physical input area (e.g.,
miniaturized keyboards), (b) increase visual scan time (e.g.,
stylus-type "soft" keyboards), and (c) add a third
dimension through time (e.g., handwriting recognition
devices). Such input modalities share the following
symptoms: (a) decreased data entry rate, (b) decreased task
completion rate, and (c) increased error rate. We are
currently working on a post-experiment study to evaluate
this assumption.

Subjects were randomly assigned to the speech-first or
handstick-first condition. Following both tasks, subjects
completed a brief questionnaire assessing their impressions
of the two interface procedures. A query assessed whether
the participant had suspected the Wizard-of-Oz nature of
the experiment. Only 7 of the 43 reported a suspicion, and
only 3 of those were based on rational evidence. The
questionnaire also included an item where subjects self-

reported their level of expertise with computer environments
like MS Windows® or Macintosh®. This was used to
generate three groups of users, namely Novice,
Intermediate, and Expert.

Data Analysis

The results of the analyses of variance suggest that the
SUITEKeys prototype would be easily learned by users,
especially when compared to the labor-intensive alternative.
Each of the four summative measures showed a significant
main effect of condition favoring the speech condition.
These effects are most pronounced for novices. Table 1
presents the group means and statistics. As shown on
Figure 3 and Table 1, users performed best in the speech
condition (i.e., took less time, typed faster, were more
complete, and made fewer errors). Note that while the means
in CompletionRate are very similar, the variance is also very
small, so those differences are significant. A significant
main effect of User Level was found for TotalTime and
TypingRate. This indicates that novice users took longer to

Variable User Level (n)

Means
Handstick
Condition

Means
Speech

Condition

Total
 Time

Novice (11)
Intermediate (12)

Expert (20)
All (43)

359.1
329.0
295.5
321.1

207.6
219.6
187.3
201.5

Completio
n Rate

Novice (11)
Intermediate (12)

Expert (20)
All (43)

.984

.994

.992

.991

.996

.999

.998

.998

Typing
Rate

Novice (11)
Intermediate (12)

Expert (20)
All (43)

.682

.749

.821

.766

1.290
1.203
1.440
1.336

Error
Rate

Novice (11)
Intermediate (12)

Expert (20)
All (43)

.083

.104

.086

.090

.034

.021

.040

.033

Variable
Main Effects

ANOVAs P(F)

Condition F (1,40) = 110.42 .0001 Total
 Time User Level F (2,40) = 5.89 .0057

Condition F (1,40) = 6.90 .0122 Completio
n Rate User Level F (2,40) = 2.15 .13, ns

Condition F (1,40) = 127.82 .0001 Typing
Rate User Level F (2,40) = 4.85 .0131

Condition F (1,40) = 23.8 .0001 Error
Rate User Level F (2,40) = 0.05 .949, ns

Table 1. Selected Results of Main Study

complete the task and were slower typists. Examination of
means shows that this was truer in the handstick condition
than in the speech condition. There were no significant
interactions between Condition and User Level.

It should be noted that one significant order effect was
found. Participants made more errors in the speech
condition when it was preceded by the handstick condition
(F (1,41)=5.31, p=.03), which we interpreted as a fatigue

effect. This conclusion is supported by the questionnaire
data.

The questionnaire presented eight statements about the
two systems. To each statement, participants indicated
their level of agreement using a six-point scale, where 1
indicated strong disagreement and 6 strong agreement. The
first item stated, "The voice controlled interface was easier
for me to use than the hand stick." The mean level of
agreement was 5.35, supporting the fatigue interpretation.

Participants also indicated that the speech condition
worked well (M=5.58) and that they would want to purchase
a program like this (M=4.38), especially if they were
physically disabled (M=5.67). Further, the participants felt
they would prefer a speech-activated system to a
handstick- or mouthstick-activated one if they were
disabled (M=5.51). Finally, users generally disagreed with
statements suggesting that the speech-activated system
was not user-friendly (M=1.23), too confusing to work with
(M=1.22), and harder to learn than the handstick (M=1.42).

Conclusion

This paper presented on-going work on a speech user
interface for providing universal access to mo bile
computing devices. This model uses a continuous speech
understanding engine to provide access to a virtual
keyboard and mouse through speech input. Although this

work was originally targeted towards computer users with
permanent motor disabilities, it also benefits able-bodied
users with temporary, task-induced motor disabilities, such
as users performing alphanumeric data entry through a
cellular phone keypad.

The conducted study indicates that speech interaction with
a virtual keyboard and mouse, as implemented SUITEKeys,
is a very effective input modality in terms of user data entry,
task completion, and error rates. Moreover, it suggests that
this modality is far better than alternative modalities used in
mobile devices that require physical manipulation of a
device component for alphanumeric data entry. Such
modalities are characterized by decreased physical input
area, increased visual scan time, and/or increased character
specification time (e.g., handwriting recognition). A speech
user interface similar to SUITEKeys would be relatively easy
to learn and to use, particularly for the motor disabled
and/or computer illiterate user. Anecdotal evidence from
the novice subjects of the study suggests that this system
is far less intimidating than other interfaces. Of course,
these results hold for users without significant speech
impediments and, currently, only in low-noise
environments. It is expected that improvements in
microphone technology will minimize the low-environment-
noise constraint.

Although speech is not the best modality for all human-
computer interaction tasks, when delivered at the level of
keyboard and mouse it allows for universal access to
computing devices – similar to the one enjoyed through a
standard QWERTY keyboard and mouse. Thus, the
proposed solution might complement or even replace
miniaturized keyboards in many application domains, as
well as other physical keyboard alternatives, such as
stylus-type soft keyboards. Since it does not require much
physical device area for alphanumeric data entry (only
microphone and perhaps speaker, for feedback), the
physical device may shrink as much as advances in
microelectronics may allow. Considering Moore's law, this
result is of significant importance. It's only a matter of time
(perhaps in the order of a few years) before new delivery
platforms for computing applications may be successfully
exploited, such as eyeglass frames, watches, and perhaps
even body implants (e.g., tooth crowns). Although the
latter raises significant ethical issues, it will also provide for
innovative solutions to a variety of problems faced by
disabled as well as able-bodied people.

Acknowledgements

This research is partially supported by the (state reference)
Board of Regents grant BoRSF-(1997-00)-RD-A-31. The
authors acknowledge the contribution of Rao Adavikolanu,
Alan Harkreader, Jonathan Laughery, Eric Li, Christopher

1.336

0.766

0.998 0.991

0.033 0.09

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Speech Handstick

Typing Rate

Completion Rate

Error Rate

Figure 3. Rate Means by Condition

Schmidt, Rohit Sonak in the implementation phase of this
work. The authors would like to thank Najwa Dibbs, Page
Salley, Nona Wilson, and the subjects for their contribution
to the usability study. Finally, Larry Duplantis, and James
Wright provided feedback on initial user requirements.

References

1. Adams, E. S.; and Meltzer, A. C. 1993. Trigrams as
Index Elements in Full Text Retrieval. In Proceedings of
the ACM 21st Annual Computer Science Conference,
433-439. New York, NY: ACM Press.

2. Agarwal, R. 1997. Towards a PURE Spoken Dialogue
System for Information Access. In Proceedings of the
ACL/EACL Workshop on Interactive Spoken Dialog
Systems: Bringing Speech and NLP Together in Real
Applications, 90-97. New Brunswick, NJ: ACL.

3. Comerford, R. 1998. Pocket Computers Ignite OS Battle.
IEEE Spectrum 35(5): 43–48.

4. Copestake, A. 1996. Applying Natural Language
Processing Techniques to Speech Prostheses. In
Working Notes of the 1996 AAAI Fall Symposium on
Developing Assistive Technology for People with
Disabilities. Menlo Park, CA: AAAI Press.

5. Dragon NaturallySpeaking SDK.
http://www.dragonsystems.com

6. Goldstein, M.; Book, R.; Alsio, G.; and Tessa, S. 1998.
Ubiquitous Input for Wearable Computing: QWERTY
Keyboard without a Board. In Proceedings of the First
Workshop on Human Computer Interaction with
Mobile Devices, Glasgow, Scotland.
http://www.dcs.gla.ac.uk/~johnson/papers/mobile/HCI
MD1.html

7. Jönsson, A. 1997. A Model for Habitable and Efficient
Dialogue Management for Natural Language
Processing. Natural Language Engineering 3(2/3):
103–122.

8. MacKenzie, I. S.; Zhang, S. X.; and Soukoreff, R. W.
1998. Text entry using soft keyboards. Forthcoming.
http://www.uoguelph.ca/~imackenz/SoftKeyboard.html

9. Manaris, B.; and Dominick, W. 1993. NALIGE: A User
Interface Management System for the Development of
Natural Language Interfaces, International Journal of
Man-Machine Studies, 38(6): 891–921.

10. Manaris, B.; and Harkreader, A. 1997. SUITE: Speech
Understanding Interface Tools and Environments. In
Proceedings of FLAIRS ’97, 247–252. St. Petersburg,
FL: Florida AI Research Society.

11. Manaris, B.; and Harkreader, A. 1998. SUITEKeys: A
Speech Understanding Interface for the Motor-Control
Challenged. In Proceedings of The Third
International ACM Conference on Assistive
Technologies (ASSETS ’98), 108–115. New York, NY:
ACM Press.

12. Yankelovich, N. 1998. Using Natural Dialogs as the
Basis for Speech Interface Design, In Automated
Spoken Dialog Systems, MIT Press. Forthcoming.

13. Tegic Communications, Inc. http://www.tegic.com

