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Abstract 

This paper presents results on a user interface model 
for providing universal access to mobile computing 
devices. The model uses a continuous speech 
understanding engine to provide access to a virtual 
keyboard and mouse through speech input. This 
research has been targeted towards users with 
permanent motor disabilities. However, these results 
also apply to able -bodied users with temporary, task-
induced motor disabilities, such as users performing 
alphanumeric data entry through a cellular phone 
keypad. The proposed solution might complement (or 
even replace) miniaturized keyboards and other 
physical keyboard alternatives, such as stylus-type 
"soft" keyboards. Since it only requires a microphone 
(and perhaps a speaker for feedback) which are already 
included in many mobile devices, it may allow such 
devices to shrink considerably in size, as alphanumeric 
input is no longer bound to a physical area. The paper 
describes the underlying architecture employed by the 
system. It presents empirical results addressing the 
effectiveness of this interface over alternative input 
methods for alphanumeric data entry. Finally, it 
discusses implications and future directions. 

Introduction 

An effective user interface has to address several issues. 
Initially, it needs to help the user develop an accurate 
conceptual model of the application domain; if the user 
already has such a model, due to earlier experience with the 
application domain, the interface needs to comply with and 
perhaps build on this model. Then, it has to provide an 
effective mapping between the user's conceptual model and 
the underlying application. Finally, it should make good use 
of existing metaphors, whenever possible, to improve 
learning and retention as well as overall user satisfaction.    

User interface developers for mobile computing devices 
face an additional problem: Size and weight become major 
constraints that may affect the marketability and viability of 
a platform. Consequently, the developer has to find 
resourceful solutions for incorporating the necessary 
input/output devices.  Since most mobile devices attempt to 
provide a user interface that allows at least entry of 
alphanumeric characters, much of the available device area 
is consumed. Conceptually, this area corresponds to a two-
dimensional matrix whose resolution depends on the 
application. This matrix maps the user's motor control to 
alphanumeric characters.  Since this mapping is not always 
one-to-one, software may be used to provide for 
disambiguation (e.g., Tegic's T9 software). (Comerford 
1998).  Examples include miniaturized keyboards in cellular 
telephones and hand-held PCs, as well as stylus-based 
"soft" keyboards (see Figure 1).  Some devices use time as 
a third dimension to further reduce the required matrix area, 
as in the PalmPilot handwriting recognition device.  The 
physical area used for alphanumeric input is sometimes 
used for visual feedback, as in the case of touch-sensitive 
screens (e.g., PalmPilot, and HP 300).   

The keyboard (physical or "soft") is not the most effective 
input device for every task. There exist many tasks that can 
be better performed through alternate modalities, such as 
point-and-click and speech.  Nevertheless, since the 
keyboard is a de facto "universal" interface for general 
computing devices (i.e., the typewriter computer metaphor), 
it is a requirement on any mobile device that supports 
access to general computing.  For instance, using a cellular 
phone with a keyboard interface a user can send e-mail or 
enter data into a spreadsheet stored on a remote PC.  
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Figure 1. Various mobile computing devices  
(left to right: NOKIA 9110, Hewlett Packard 300 Series, 3Com 

PalmPilot). 



This keyboard interface requirement renders mobile devices 
at least as large as the size of the device they employ for 
alphanumeric data entry.   Given Moore's law1, very soon 
this requirement will become a major obstacle in the 
continued reduction of mobile device size.  In other words, 
as long as alphanumeric input requires physical device area, 
potential size (and weight) reduction of mobile devices is 
rigidly constrained. 

A Virtual Keyboard 

Goldstein et al. (1998) propose an innovative solution for 
removing the constraint imposed by the keyboard interface. 
Their solution involves a virtual keyboard accessible 
through electromyography (EMG) sensors.  These sensors 
perceive the muscular contractions of the user's fingers as 
(s)he is "typing" on any flat surface.  Keyboard characters 
are assigned to each finger using the traditional placement 
of fingers on a QWERTY keyboard.  Information as to 
which finger was pressed is sent using wireless signal 
transmission to the mobile device, e.g., cellular phone.  
Since input is one-dimensional (e.g., finger "1" was pressed, 
then finger "6", followed by finger "2"), the system uses a 
language model to disambiguate among alternative keys 
accessible by each finger.   

One advantage of this solution is that any flat surface will 
do.  However, it presupposes that such a surface is readily 
available and that there is enough "elbow room" to utilize it 
– obviously, this would not be the case in a crowded bus, 
for example, or while walking in the street.  It also 
presupposes that the user is an expert "blind" typis t on a 
QWERTY keyboard.  Finally, it does not handle cursor 
movements, concurrent key presses, as well as point-and-
click operations.  However, its major contribution is that it 
completely disassociates alphanumeric input from the 
physical device area. Thus it eliminates keyboard-based 
constraints on physical size requirements of mobile devices. 

SUITEKeys2 User Interface 

The solution proposed herein is to provide a speech user 
interface that models a virtual keyboard and mouse.   This 
interface, named SUITEKeys, provides an one-to-one 
mapping between user utterances and keyboard/mouse-

                                                                 
1 Moore's law states that the power/area ratio of integrated 
circuits doubles every 18 months. It is suspected that, as 
integrated circuits begin growing in the third dimensio n, 
this law will no longer hold.  This is because, strictly based 
on geometric principles, the power/volume ratio should 
grow much faster than the power/area ratio of traditional 2D 
designs. 
2 SUITEKeys is an application of research on Speech 
Understanding Interface Tools and Environments. 

level operations, such as pressing/releasing a key and 
moving the cursor a certain distance/direction.  Thus, it 
provides access to the complete functionality of any 
computing device (mobile or not) similarly to a physical 
keyboard/mouse interface.   

SUITEKeys is based on a speech understanding 
architecture that encapsulates a hybrid language model 
consisting of statistical and symbolic components. It 
accepts regular and military alphabet pronunciation. It 
supports additional features such as selection from a list of 
frequently entered words, and the ability to switch into a 
non-active (sleep) state (so that another, task-specific 
speech application may be used).  The list of frequently 
entered words is based on techniques for statistical word 
prediction that have been shown to speed up word data 
entry (Copestake 1996; Tegic Communications, Inc.). 
Finally, it supports modeling of task-specific activities, such 
as dialing a number, managing e-mail communication, and 
maintaining verbal macros for commonly used operations.    

Similarly to the EMG-sensor solution discussed above, it 
disassociates keyboard input from the physical area of the 
mobile device, and thus eliminates constraints on size 
reduction.  Additionally, in the case of devices that already 
have a microphone and speaker (e.g., cellular phones, 
personal digital assistants, palm-held PCs), it requires no 
additional physical apparatus. One drawback of this 
solution is that it may not be appropriate in public places 
due to privacy issues. However, this is also true for 
traditional use of cellular telephones, which are very prolific 
in spite of this drawback due to the other advantages they 
offer, such mobility and reduced size. 

SUITEKeys originated from research targeted to users with 
motor disabilities (Manaris and Harkreader 1998).  However, 
it soon became clear that it also applies to users with 
temporary, task-induced motor disabilities.  This includes 
users involved in tasks that "monopolize" hand motor 
control (such as driving a car or servicing a jet engine).  It 
also includes users performing alphanumeric data entry on 
mobile devices.  As the dimensions of traditional input 
devices shrink, the motor skills of the user become less 
effective, almost inadequate. For instance, studies show 
that users may experience severe reduction in data entry 
speed (wpm) when switching from a regular QWERTY 
keyboard to a mobile device keyboard alternative.  One 
study reports a 4:1 reduction on a stylus-based "soft" 
keyboard (PalmPilot) (Goldstein et al. 1998). Another study 
reports a 3:1 reduction on a telephone keypad (MacKenzie 
et al. 1998).  

System Architecture 

The architecture of the SUITEKeys user interface is based 
on SUITE, a framework for developing speech 



understanding interfaces to interactive computer systems 
(Manaris and Harkreader 1997). As shown on Figure 2, the 
system architecture integrates speech recognition and 
natural language processing modules. When used with 
mobile devices that are equipped with microphone and 
speaker, such as cellular phones and personal digital 
assistants, it requires no additional hardware. The complete 
system is encapsulated within the mobile device and runs 
on top of the device's operating system like any other 
application.   

The architecture consists of knowledge-base and 
processing components. These are organized in a pipelined 
fashion for converting user utterances to the corresponding 
instructions for the mobile device operating system.  These 
components are described in the following sections.  

Dialog Management 

The dialog manager encapsulates a multi-layered dialog 
architecture (Agarwal 1997; Jönsson 1997). This 
architecture is modeled as a dialog grammar containing 
dialog states and actions. The top grammar layer consists 
of domain independent states, whereas the lower layers 
consist of domain specific states.  Each rule represents an 
AND/OR graph.  AND nodes represent dialog states that 
need to be satisfied sequentially, whereas OR states 
represent alternative dialog paths. Additionally, each state 
may be associated with a specific language model (e.g., 
lexicon, grammar) which may help focus speech 
understanding, thus increasing accuracy. Actions 
associated with dialog states may be performed before a 
state is visited (pre-actions), or after a state is visited (post-
actions).  Pre-actions may be used as preconditions, i.e., if 
the action fails, the associate dialog state is not explored.  
Post-actions may be used to maintain knowledge about the 
interaction as well as guide other processing components. 

A focus structure is provided to help interpret referents 
(e.g., "this", "it") as well as other context -dependent 
phenomena.  This focus structure holds a dialog state's 
focal parameters and can be accessed by the state's actions.  
The focus structure of a new dialog state is initialized using 
the focus structure of the immediately preceding state.  This 
accounts for most context -dependent utterances (Jönsson 
1997). 

This model supports mixed-initiative dialogs, in that either 
the system or the user can initiate a (sub)dialog at any point 
during interaction (Agarwal 1997).  This is accomplished by 
checking the user input against the upper-layer of the 
dialog grammar, and/or against a collection of task-specific, 
user-interrupt dialog states. Mixed-initiative dialogs are 
supported by a set of actions for pushing/popping a dialog 
state, starting a new dialog, or ending the current dialog 
state.  The model includes a dialog stack whose size may be 

limited to accommodate memory constraints on mobile 
devices.  Additionally, appropriate verbal prompts may be 
constructed to help the user develop a conceptual model of 
the current dialog state, e.g. "You have new e-mail.  Would 
you like to read it?" (Yankelovich 1998).  Finally, this 
module handles exceptions/errors that are raised by other 
components.  In mobile devices with limited (or non-
existent) displays, it may use the speech generator to 
provide feedback to the user, if necessary.   

Speech Processing 

Originally speech processing was performed through a 
neural-network based phoneme probability estimator 
(Manaris and Harkreader 1997). This accepted a continuous 
stream of input feature vectors and produced a phoneme 
probability matrix that was given to a Viterbi process.  This 
process generated the N-best hypotheses as to what 
sequences of phonemes had been spoken.  Due to the 
dramatic evolution in continuous speech processing 
engines within the last two years, our architecture now 
implements the Microsoft Speech API (SAPI). Thus it can 
support any SAPI-compliant engine. Currently, we use the 
NaturallySpeaking SDK provided by Dragon Systems 
(Dragon NaturallySpeaking SDK). 

Lexical Analysis 

Lexical processing is performed through a dictionary of 
lexemes (words supported in the application domain). Each 
dictionary entry defines a lexeme in terms of its 
syntactic/semantic category as well as additional linguistic 
or extra-linguistic information.  For example,  
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Figure 2.  SUITEKeys Architecture  



"go" : ([GO-VERB]  {other info}) 
"to" : ([TO-PREP] {other info}) 
"sleep" : ([SLEEP-VERB] {other info}) 
"b" : ([B-LETTER] (homophones b p) …) 
"bravo" : ([B-LETTER] {other info}) 
"d" : ([D-LETTER] (homophones d t) …) 

This process allows for modeling of homophones (lexemes 
that sound alike). For instance, in the SUITEKeys domain, 
there exist several lexemes that can be easily confused by a 
speech engine (such as "b" and "p", and "d" and "t"). This 
is not necessarily a shortcoming of the speech engine, as 
these lexemes are easily confusable by humans as well – 
hence the invention of the military alphabet.  

Since speech engines are normally not customizable to 
resolve ambiguities at the level of individual letters, we 
provide a statistical disambiguation algorithm based on 
overlapping trigrams. This is similar in function to the 
algorithms used by the T9 software (Tegic) and Goldstein et 
al. (1998). Specifically, trigrams are extracted from textual 
units (a sequence of tokens delimited by whitespace 
characters) by moving a "window" of three characters 
along a textual unit (Adams and Meltzer 1993). For each 
possible trigram, the dictionary includes the probabilities of 
its occurrence within different positions in a textual unit.  
For instance, 

"abc" :([TRIGRAM] (probabilities (1 .02) 
        (3 .05) (7 .0023) ...) 

For each textual unit in the input, the algorithm cycles 
through all trigrams (starting with the first) keeping track of 
position within the textual unit. It replaces each character c 
with its set of homo phones ch.  For example, ("pat") should 
be replaced by (("b" "p") ("a") ("d" "t")). From this set of 
potential trigrams, e.g., ("bad" "bat" "pad" "pat"), it picks 
the most probable trigram given the trigram's position in the 
textual unit and uses it to construct the disambiguated 
textual unit. 

Other Components 

The SUITEKeys architecture incorporates the following 
additional components.  Due to space limitations, only an 
overview is given   This is because these components are 
either traditional in nature and/or are described elsewhere 
(Manaris and Dominick 1993; Manaris and Harkreader 
1997): 

Parser: This is a left-to-right, top-down, non-deterministic 
parser.  It allows for multiple parse trees, thus providing for 
ambiguity handling at the semantic level.  It incorporates 
semantic actions for constructing semantic interpretations 
of user input. 

Pragmatic Analyzer: This module further refines semantic 
interpretations produced by the parser using predicate-

calculus logic constraints.  These constraints are dynamic, 
in that they may be updated as the result of an action 
originating from other components such as the parser, error 
handler, and dialog manager.   

Code Generator: This module converts semantic 
interpretations to low-level code  understood by the 
operating system of the mobile device. 

Knowledge-Base Manager: This module coordinates 
interaction of other components with the SUITEKeys 
knowledge base. 

Speech Generator: This module provides primitives for text -
to-speech conversion. It is supported by the SAPI-
compliant speech engine. 

SUITEKeys Prototype  

The SUITEKeys prototype is being developed as an 
interface to the Microsoft’s Windows®95 and NT 4.0 
operating systems.  It is currently implemented in Visual 
BASIC, Visual C/C++, and LISP using the 
NaturallySpeaking SDK. Each component is either an 
ActiveX control or a dynamic link library (DLL).  This 
allows objects written in one ActiveX-aware language to 
communicate with objects written in a different ActiveX-
aware language.  Languages that support ActiveX objects 
include Microsoft Visual Basic, Microsoft and Borland 
implementations of C++, Microsoft Java 6.0 , and Borland 
Delphi. Once the prototype is refined, the next step will be 
to port it to Windows CE® which is supported by a 
multitude of mobile devices. 

Usability Evaluation 

This section reports on two experiments designed to assess 
the following hypothesis: Speech input as provided by 
SUITEKeys is an effective input modality for motor-
challenged users.   

Pilot Study 

The first experiment served as a pilot study to help refine 
the SUITEKeys functional requirements, as well as assess 
the methodology for the second, full-scale evaluation 
study.  In this study, subjects where asked to type in a 
short paragraph on a Windows95 platform using two 
alternative input modalities: (a) their preferred input 
modality, and (b) a Wizard-of-Oz prototype3 of SUITEKeys.  
The use of a Wizard-of-Oz prototype allowed as to  

                                                                 
3 A Wizard-of-Oz experiment involves a human acting as a 
hidden interface between the user and the computer; the 
human is simulating the functionality of the system under 
study. 



• constrain subjects to the application domain, 

• provide freedom of expression, and 

• evaluate and refine application requirements, such as 
vocabulary, grammar, interaction patterns, design of 
prompts/feedback, as well as the overall concept 
effectiveness (Yankelovich 1998). 

This study was carried out in the fall of 1997 and involved 
three motor-disabled users as subjects. To collect data for 
analysis, we captured the computer display and room audio 
on video, logged keyboard and mouse events, and 
examined the text files created by the subjects. The results, 
although not statistically significant, supported the 
hypothesis – overall, subjects performed better using 
speech, in terms of task completion rate, typing rate, and 
error rate.  For a detailed description of this study and its 
results, see (Manaris and Harkreader 1998). 

Main Study 

The follow-up, full-scale study was carried out in the 
summer of 1998. It involved 43 psychology students who 
participated as part of their course requirements. In this 
study we compared one of the standard input modalities, 
the mouthstick , with the SUITEKeys Wizard-of-Oz 
prototype.  Subjects where asked to type in and save a one-
paragraph document in each condition. Two linguistically 
equivalent paragraphs were used as sources (one in each 
condition). Although the subjects where not permanently 
disabled, a motor challenge was introduced through the use 
of a handstick. Specifically, subjects where asked to hold 
an unsharpened pencil with both hands, having hands held 
under the chin, thus simulating a mouthstick  or single-digit 
typing.  

We assume that the handstick  effectively simulates a range 
of alternative input modalities that have the following 
characteristics: (a) decrease physical input area (e.g., 
miniaturized keyboards), (b) increase visual scan time (e.g., 
stylus-type "soft" keyboards), and (c) add a third 
dimension through time (e.g., handwriting recognition 
devices).  Such input modalities share the following 
symptoms: (a) decreased data entry rate, (b) decreased task 
completion rate, and (c) increased error rate. We are 
currently working on a post-experiment study to evaluate 
this assumption.   

Subjects were randomly assigned to the speech-first or 
handstick-first condition.  Following both tasks, subjects 
completed a brief questionnaire assessing their impressions 
of the two interface procedures. A query assessed whether 
the participant had suspected the Wizard-of-Oz nature of 
the experiment.  Only 7 of the 43 reported a suspicion, and 
only 3 of those were based on rational evidence.  The 
questionnaire also included an item where subjects self-

reported their level of expertise with computer environments 
like MS Windows® or Macintosh®.  This was used to 
generate three groups of users, namely Novice, 
Intermediate, and Expert. 

Data Analysis 

The results of the analyses of variance suggest that the 
SUITEKeys prototype would be easily learned by users, 
especially when compared to the labor-intensive alternative.  
Each of the four summative measures showed a significant 
main effect of condition favoring the speech condition. 
These effects are most pronounced for novices.  Table 1 
presents  the group means and statistics.  As shown on 
Figure 3 and Table 1, users performed best in the speech 
condition (i.e., took less time, typed faster, were more 
complete, and made fewer errors). Note that while the means 
in CompletionRate are very similar, the variance is also very 
small, so those differences are significant. A significant 
main effect of User Level was found for TotalTime  and 
TypingRate. This indicates that novice users took longer to 

Variable User Level (n) 

Means 
Handstick  
Condition 

Means 
Speech  

Condition 

Total 
 Time 

Novice (11) 
Intermediate (12) 

Expert (20) 
All (43) 

359.1 
329.0 
295.5 
321.1 

207.6 
219.6 
187.3 
201.5 

Completio
n Rate 

Novice (11) 
Intermediate (12) 

Expert (20) 
All (43) 

.984 

.994 

.992 

.991 

.996 

.999 

.998 

.998 

Typing 
Rate 

Novice (11) 
Intermediate (12) 

Expert (20) 
All (43) 

.682 

.749 

.821 

.766 

1.290 
1.203 
1.440 
1.336 

Error  
Rate 

Novice (11) 
Intermediate (12) 

Expert (20) 
All (43) 

.083 

.104 

.086 

.090 

.034 

.021 

.040 

.033 

Variable 
Main Effects 

ANOVAs P(F) 

Condition F (1,40) = 110.42 .0001 Total 
 Time User Level F (2,40) = 5.89 .0057 

Condition F (1,40) = 6.90 .0122 Completio
n Rate User Level F (2,40) = 2.15 .13, ns 

Condition F (1,40) = 127.82 .0001 Typing 
Rate User Level F (2,40) = 4.85 .0131 

Condition F (1,40) = 23.8 .0001 Error  
Rate User Level F (2,40) = 0.05 .949, ns 

Table 1. Selected Results of Main Study 



complete the task and were slower typists.  Examination of 
means shows that this was truer in the handstick condition 
than in the speech condition.  There were no significant 
interactions between Condition and User Level.    

It should be noted that one significant order effect was 
found.  Participants made more errors in the speech 
condition when it was preceded by the handstick condition 
(F (1,41)=5.31, p=.03), which we interpreted as a fatigue 

effect.  This conclusion is supported by the questionnaire 
data.   

The questionnaire presented eight statements about the 
two systems.  To each statement, participants indicated 
their level of agreement using a six-point scale, where 1 
indicated strong disagreement and 6 strong agreement. The 
first item stated, "The voice controlled interface was easier 
for me to use than the hand stick."  The mean level of 
agreement was 5.35, supporting the fatigue interpretation.  

Participants also indicated that the speech condition 
worked well (M=5.58) and that they would want to purchase 
a program like this (M=4.38), especially if they were 
physically disabled (M=5.67).  Further, the participants felt 
they would prefer a speech-activated system to a 
handstick- or mouthstick-activated one if they were 
disabled  (M=5.51).  Finally, users generally disagreed with 
statements suggesting that the speech-activated system 
was not user-friendly (M=1.23), too confusing to work with 
(M=1.22), and harder to learn than the handstick (M=1.42). 

Conclusion 

This paper presented on-going work on a speech user 
interface for providing universal access to mo bile 
computing devices. This model uses a continuous speech 
understanding engine to provide access to a virtual 
keyboard and mouse through speech input.  Although this 

work was originally targeted towards computer users with 
permanent motor disabilities, it also benefits able-bodied 
users with temporary, task-induced motor disabilities, such 
as users performing alphanumeric data entry through a 
cellular phone keypad.  

The conducted study indicates that speech interaction with 
a virtual keyboard and mouse, as implemented SUITEKeys, 
is a very effective input modality in terms of user data entry, 
task completion, and error rates.  Moreover, it suggests that 
this modality is far better than alternative modalities used in 
mobile devices that require physical manipulation of a 
device component for alphanumeric data entry.  Such 
modalities are characterized by decreased physical input 
area, increased visual scan time, and/or increased character 
specification time (e.g., handwriting recognition).  A speech 
user interface similar to SUITEKeys would be relatively easy 
to learn and to use, particularly for the motor disabled 
and/or computer illiterate user.  Anecdotal evidence from 
the novice subjects of the study suggests that this system 
is far less intimidating than other interfaces.  Of course, 
these results hold for users without significant speech 
impediments and, currently, only in low-noise 
environments. It is expected that improvements in 
microphone technology will minimize the low-environment-
noise constraint. 

Although speech is not the best modality for all human-
computer interaction tasks, when delivered at the level of 
keyboard and mouse it allows for universal access to 
computing devices – similar to the one enjoyed through a 
standard QWERTY keyboard and mouse.  Thus, the 
proposed solution might complement or even replace 
miniaturized keyboards in many application domains, as 
well as other physical keyboard alternatives, such as 
stylus-type soft keyboards. Since it does not require much 
physical device area for alphanumeric data entry (only 
microphone and perhaps speaker, for feedback), the 
physical device may shrink as much as advances in 
microelectronics may allow.  Considering Moore's law, this 
result is of significant importance.  It's only a matter of time 
(perhaps in the order of a few years) before new delivery 
platforms for computing applications may be successfully 
exploited, such as eyeglass frames, watches, and perhaps 
even body implants (e.g., tooth crowns). Although the 
latter raises significant ethical issues, it will also provide for 
innovative solutions to a variety of problems faced by 
disabled as well as able-bodied people. 
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