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Abstract 

We present a corpus-based hybrid approach to music 
analysis and composition, which incorporates statistical, 
connectionist, and evolutionary components. Our 
framework employs artificial music critics, which may be 
trained on large music corpora, and then pass aesthetic 
judgment on music artifacts.  Music artifacts are generated 
by an evolutionary music composer, which utilizes music 
critics as fitness functions.  To evaluate this approach we 
conducted three experiments.  First, using music features 
based on Zipf’s law, we trained artificial neural networks to 
predict the popularity of 992 musical pieces with 87.85% 
accuracy. Then, assuming that popularity correlates with 
aesthetics, we incorporated such neural networks into a 
genetic-programming system, called NEvMuse.  NEvMuse 
autonomously “composed” novel variations of J.S. Bach’s 
Invention #13 in A minor (BWV 784), variations which 
many listeners found to be aesthetically pleasing.  Finally, 
we compared aesthetic judgments from an artificial music 
critic with emotional responses from 23 human subjects.  
Significant correlations were found.  We provide evaluation 
results and samples of generated music.  These results have 
implications for music information retrieval and computer-
aided music composition. 

Introduction   
Music composition is one of the most celebrated activities 
of the human mind across time and cultures.  According to 
Minsky and Laske (1992), due to its unique characteristics 
as an intelligent activity, it poses significant challenges to 
existing AI approaches, with respect to (a) formalizing 
music knowledge, and (b) generating music artifacts.  
 In this paper, we present a corpus-based hybrid approach 
to music composition, which incorporates statistical, 
connectionist, and evolutionary components. We model 
music composition as a process of iterative refinement, 
where music artifacts are generated, evaluated against 
certain aesthetic criteria, and then refined to improve their 
aesthetic value. In terms of formalizing music knowledge, 
we employ artificial music critics – intelligent agents that 
may be trained on large music corpora, and then pass 
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aesthetic judgment on music artifacts.  In terms of 
generating music action, we employ an evolutionary music 
composer – an intelligent agent, which generates music 
through genetic programming, utilizing artificial music 
critics as fitness functions.   

Artificial Art Critics 
The process of music composition depends highly on the 
ability to perform aesthetic judgments, to be inspired by 
the works of other composers, and to act as a critic of one’s 
own work.  However, most music generation systems 
developed in the past few years neglect the role of the 
listener/evaluator in the music composition process (e.g. 
see survey by Wiggins et al., 1999). We believe that 
modeling the aesthetic judgment part of the human 
composer is an important, if not necessary, step in the 
creation of a “successful” artificial composer.  
 Artificial Art Critics (AACs) are intelligent agents 
capable of classifying/evaluating human- or computer-
generated artifacts using as learning base a set of 
taxonomized examples (Romero et al. 2003; Machado et 
al., 2003).  In particular, the AAC architecture incorporates 
a feature extractor and an evaluator module (see figure 1). 
The feature extractor is responsible for the perception of 
music artifacts, generating as output a set of measurements 
that reflect relevant characteristics. These measurements 
serve as input for the evaluator, which assesses the artwork 
according to a specific criterion or aesthetics. 
 In this paper, we explore the development of AACs 
specific to music evaluation.  We focus on two main 
aspects, the use of metrics based on Zipf’s law for the 
development of AACs, and the use of these AACs for 
fitness assignment in an evolutionary composition system. 

Evolutionary Music Composition 
The main difficulty in the application of evolutionary 
computing (EC) techniques to music tasks involves choices 
for (a) an appropriate representation and (b) an appropriate 
fitness assignment scheme.  It can be argued that music (at 
least conventional music) has a hierarchic structure; thus 
developing representations that capture and take advantage 
of this structure may be an important step in the 
development of an effective EC music system. Typically, 
genetic algorithm (GA) approaches use a linear 
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representation, while genetic programming (GP) 
approaches prefer tree-based representations. According to 
Papadopoulos and Wiggins (1999) the hierarchical nature 
of GP representations make them more suited for musical 
tasks. 
 The use of a robust, adaptive and flexible method such 
as genetic programming, together with a mechanism of 
internal evaluation based on examples of “good” artifacts, 
may facilitate the autonomous generation of new music 
themes similar to (a) a particular composer’s style (e.g., 
J.S. Bach), (b) a particular musical genre (e.g., Jazz), (c) an 
individual’s eclectic aesthetic preferences (as identified by 
the chosen “good” examples), and possibly (d) various 
combinations of the above. 
 The proposed framework is evaluated through three 
experiments. The first experiment evaluates the ability of 
artificial critics to classify music based on aesthetics. The 
second experiment focuses on evolutionary music 
composition utilizing such critics. The third experiment 
compares aesthetic judgments of an artificial critic with 
those of human listeners. 

Related Work 
Horner and Goldberg (1991) applied a GA to perform 
thematic bridging, in what became the first work exploring 
the use of an EC approach in a music-related task. Since 
then a vast number of papers on the subject have been 
published (for a thorough survey see Todd and Werner, 
1998; Miranda and Biles, 2007). Today, EC music 
comprises a wide array of tasks, including composition, 
harmonization, sound synthesis, and improvisation. 
 Fitness assignment plays an important role in any EC 
system; musical tasks are not an exception. There are 
essentially five different approaches to fitness assignment:  
• interactive evaluation – fitness values are provided by 

humans (e.g. Horowitz, 1994);  
• similarity based – fitness depends on “proximity” to a 

specific sound or music piece (e.g. Horner and Goldberg, 
1991);  

• hardwired fitness functions, typically based on music 
theory (e.g. Phon-Amnuaisuk and Wiggins, 1999);  

• machine learning approaches, such as neural networks 
(e.g. Gibson and Byrne, 1991); and  

• co-evolutionary approaches (e.g. Todd and Werner, 
1998).  

The combination of several of the above methods has also 
been explored (e.g. Spector and Alpern, 1994; 1995). 
 We are interested in EC composition systems that 
employ machine-learning methods to supply fitness. 
Among related systems, the work of Johanson and Poli 
(1998) is similar to our approach. They employ a GP 
system, where the function set consists of operations on 
sets of notes (e.g. play_twice), and the terminal set consists 
of individual notes and chords. Initially, small tunes are 
evolved by interactive evolution. These are then used to 
train an artificial neural network (ANN) with shared 
weights, which is able to handle variable length inputs. 
Once trained, the ANN is used to assign fitness to new 
individuals.  Our approach is different with respect to (a) 
the ANN input values (notes vs. extracted features); (b) the 
topology of the ANN; and (c) the algorithm used to build 
the training corpus. 
 In Machado et al. (2007) we present a similar approach 
in the visual domain. In this case, the AAC is trained to 
distinguish between external images (e.g., paintings) and 
images created by evolutionary artists. The iterative 
refinement of the AAC forces the GP engine to explore 
new paths, leading to a stylistic change. The inclusion of a 
fixed set of external images provides an “aesthetic 
referential” promoting the relation between evolved 
imagery and conventional aesthetics.  

Music Aesthetics and Power Laws 
Our approach builds on earlier research, which suggests 
that power laws provide a promising statistical model for 
music aesthetics.   
 According to Salingaros and West (1999), most pleasing 
designs in human artifacts obey a power law. “The relative 
multiplicity p of a given design element, i.e., the relative 
number of times it repeats (frequency), is determined by a 
characteristic scale size x as roughly pxm = C , where C is 
related to the overall size of the structure, and the index m 
is specific to the structure.”   
 A logarithmic plot of p versus x has a slope of m, where 
–1 ≤ m ≤ –2. Exceptions to this rule correspond to 
“incoherent, alien structures” (ibid, p. 909).    
 In many cases, statistical rank may be used instead of 
size. This variation is known as Zipf’s law, after the 
Harvard linguist, George Kingsley Zipf, who studied it 
extensively in natural and social phenomena (Zipf, 1949).  
Figure 2 shows the rank-frequency distribution of melodic 
intervals in Chopin’s “Revolutionary Etude”, which 
approximates Zipf’s law. 
 Voss and Clarke (1978) have shown that classical, rock, 
jazz, and blues music exhibit a power law with slope 
approximately –1. They generated music artifacts 

 
Figure 1. Overview of the AAC architecture. 



exhibiting power law distributions with m ranging from 0 
(white noise), to –1 (pink noise), to –2 (brown noise).  
Pink-noise music was much more pleasing to most 
listeners, whereas white-noise music sounded “too 
random”, and brown-noise music “too correlated”.   
 Manaris et al. (2003) showed that 196 “socially-
sanctioned” (popular) music pieces exhibit power laws 
with m near –1 across various music attributes, such as 
pitch, duration, and melodic intervals.  
 Power laws have been applied to music classification, in 
terms of composer attribution, style identification, and 
pleasantness prediction, as follows: 
Composer Attribution.  Machado et al. (2003, 2004) 
trained ANNs to classify music pieces between various 
combinations of composers including Bach, Beethoven, 
Chopin, Debussy, Purcell, and Scarlatti. Features were 
extracted from these pieces using power-law metrics.  
Corpora ranged across experiments from 132 to 758 MIDI-
encoded music pieces.  Success rates ranged from 93.6% to 
95% across experiments. 
Style Identification. In similar experiments, we have 
trained ANNs to classify music pieces from different 
styles.  Our corpus consisted of Baroque (161 pieces), 
Classical (153 pieces), Country (152 pieces), Impressionist 
(145 pieces), Jazz (155 pieces), Modern (143 pieces), 
Renaissance (153 pieces), Rock (403 pieces), Romantic 
(101 pieces). ANNs achieved success rates ranging from 
71.52% to 96.66% (under publication). 
Pleasantness Prediction. Manaris et al. (2005) conducted 
an ANN experiment to explore correlations between 
human-reported pleasantness and metrics based on power 
laws.  Features were extracted from 210 excerpts of music, 
and then human responses to these pieces were recorded.  
The combined data was used to train ANNs.  Using a 12-
fold cross-validation study, the ANNs achieved an average 
success rate of 97.22% in predicting (within one standard 
deviation) human emotional responses to those pieces. 

Feature Extraction 
Similarly to the above experiments, we employ music 
metrics based on power laws to extract relevant features 
from music artifacts.  
 Each metric measures the entropy of a particular music-
theoretic or other attribute of music pieces.  For example, 
in the case of melodic intervals, a metric counts each 
occurrence of an interval in the piece, e.g., 168 half steps, 
86 unisons, 53 whole steps, and so on.  Then it calculates 
the slope and R2 values of the logarithmic rank-frequency 
distribution (see figure 2).  In general, the slope may range 
from 0 to –∞, with 0 corresponding to high entropy and –∞ 
to zero entropy. The R2 value may range from 0 to 1, with 
1 denoting a straight line; this captures the proportion of  
y-variability of data points with respect to the trendline.  
Our metrics are categorized as follows: 
Regular Metrics. These capture the entropy of a regular 
attribute or event (an 'event' is anything countable, e.g., a 
melodic interval). We currently employ 14 regular metrics 
related to pitch, duration, harmonic intervals, melodic 
intervals, harmonic consonance, bigrams, chords, and rests. 
Higher-Order Metrics. These capture the entropy of the 
difference between two consecutive regular events. 
Similarly to the notion of derivative in mathematics, for 
each regular metric one may construct an arbitrary number 
of higher-order metrics (e.g., the difference of two events, 
the difference of two differences, etc.). 
Local Variability Metrics. These capture the entropy of 
the difference of an event from the local average.  In other 
words, local variability, d[i], for the ith event is 

 d[i] = abs(tNN[i] - average(tNN, i)) / average(tNN, i)  

where tNN is the list of events, abs is the absolute value, 
and average(tNN, i) is the local average of the last, say, 5 
events (Kalda et al., 2001). One local variability metric is 
provided for each of the above metrics.  
 It should be noted that these metrics implicitly capture 
significant aspects of musical hierarchy. Similarly to 
Schenkerian analysis, music events (e.g., pitch, duration, 
etc.) are recursively reduced to higher-order ones, 
capturing long-range structure in pieces.  Consequently, 
pieces without hierarchical structure have significantly 
different measurements than pieces with structure. 

A Simple Music Critic Experiment 
Since artificial music critics are integral to the success of 
the proposed approach, we decided to evaluate their 
effectiveness. However, assessing aesthetic judgment is 
similar to assessing intelligence; there is no objective way 
to do so, other than perhaps a variant of the Turing Test.  
So, assuming a correlation between popularity and 
aesthetics, one could post music pieces on a website and 
collect download statistics over a long period of time.  
Another possibility is to ask human subjects to evaluate the 
aesthetics of music artifacts, and then compare these 

 
 

Figure 2.  Distribution of melodic intervals for 
Chopin’s “Revolutionary Etude”, Opus 10 No. 12 in  

C minor.  Slope is –1.18, R2 is 0.92. 



judgments with those of music critics.  This section 
explores the first approach.  The second approach is 
explored later in this paper. 
 For this experiment, we used the Classical Music 
Archive corpus, which consists of 14,695 MIDI pieces 
(http://www.classicalarchives.com). We also obtained 
download logs for one month (November 2003), which 
contains a total of 1,034,355 downloads.  Using these data, 
we identified the 305 most popular pieces.  
 A piece was considered popular if it had a minimum of 
250 downloads for the month.  For example, the five most 
popular pieces were:  
• Beethoven’s Bagatelle No. 25 in A minor, “Fur Elise” 

(9965 requests);  
• J.S. Bach’s Jesu, Joy of Man’s Desiring, BWV147 (8677 

requests);  
• Vivaldi’s  ‘Spring’ Concerto, RV.269, “The Seasons”, 1. 

Allegro (6382 requests);  
• Mozart’s Divertimento in D, K.136, 1. Allegro (6190 

requests); and 
• Mozart’s Sonata in A, K.331 (with Rondo alla Turca) 

(6017 requests).  
Using the same download statistics, we also identified 617 
unpopular pieces.  To ensure a clear separation between the 
two sets (and thus control for other variables, such as 
physical placement of links to music pieces within the 
website), we selected pieces with only 20 or 21 downloads 
for the month.  This separated the two sets (popular and 
unpopular) by several thousand pieces. For example, five 
unpopular pieces were (all at 20 requests):  
• Marchetto Cara’s, Due frottole a quattro voci, 1. Crudel, 

fugi se sai;   
• Niels Gade, String Quartet in D, Op. 63, 3. Andante, 

poco lento;  
• Ernst Haberbier, Studi-Poetici, Op. 56, No. 17, 

Romanza;  
• George Frideric Handel, Tamerlano, HWV18 – 

Tamerlano’s aria “A dispetto d’un volto ingrato”; and  
• Igor Stravinsky, Oedipus Rex, Caedit nos pestis – Liberi, 

vos liberado. 

ANN Classification Tests 
Several ANN classification tests were conducted between 
popular and unpopular pieces.  The metrics described 
earlier were used to extract features (slope and R2 values) 
for each music piece.   
 In the first classification test, we trained an ANN with 
225 features extracted per piece. We carried out a 10-fold, 
cross-validation experiment using a feed-forward ANN 
trained via backpropagation. The ANN trained for 500 
epochs using values of 0.2 for momentum and 0.3 for 
learning rate. The ANN architecture involved 225 elements 
in the input layer and 2 elements in the output layer. The 
hidden layer contained (input nodes + output nodes)/2 
nodes.  
 For control purposes, we ran a second experiment 
identical to the first, using randomly assigned classes for 
each music piece.  

 Finally, we ran a third experiment with the same setup 
as the first, but using only the 79 most relevant attributes.  
These were the attributes most highly correlated with a 
class, and least correlated with one another. 

Results and Discussion 
In the first test, the ANN achieved a success rate of 
87.85% (correctly classified 810 of 922 instances). The 
ANN in the control test achieved a success rate of 49.68% 
(458 of 922 instances).  This result suggests that the high 
success rate of the first ANN is due mainly to the 
effectiveness of the metrics. In the third classification test, 
using the 79 most relevant features, the ANN achieved a 
success rate of 86.11%.    
 Clearly, the prominent issue in using artificial music 
critics is finding appropriate corpora to train them. It is 
quite easy to find popular (socially sanctioned) music, but 
much harder to find truly unpopular (bad) music, since, by 
definition, the latter does not get publicized or archived.1 
Even without access to truly bad “music”, this experiment 
demonstrates the potential for developing artificial music 
critics that may be trained on large music corpora. 

A Simple Music Composer Experiment 
The second experiment evaluated the effectiveness of an 
evolutionary music composer incorporating artificial music 
critics for fitness assignment.   
 We implemented a genetic-programming system, called 
NEvMuse (Neuro-Evolutionary Music environment). This 
is an autonomous genetic programming system, which 
evolves music pieces using a fitness mechanism based on 
examples of desirable pieces.   Assuming a correlation 
between popularity and aesthetics, NEvMuse utilizes 
ANNs, trained on various music corpora, as fitness 
functions.  The input to NEvMuse consists of: 
• a harmonic outline of the piece to be generated (MIDI); 
• a set of “melodic genes” to be used as raw material 

(MIDI); and 
• a music critic. 
The harmonic outline provides a harmonic and temporal 
template to be filled in.  The melodic genes may be a few 
notes (e.g., a scale, a solo, etc.), or a complete piece; these 
may be broken up into individual notes or phrases of 
random lengths.  
 The system proceeds by creating random arrangements 
of the melodic genes, evaluating them using the music 
critic, and recombining them using standard genetic 
operators.  This process continues until a fitness threshold 
is reached.   
                                                
1 Even the unpopular music in the music critic experiment is not 
truly bad, as it has to be somewhat aesthetically pleasing to some 
listeners for it to have been performed, published, and archived. 



Genotype Representation 
NEvMuse represents the genotype of an individual as a 
symbolic expression (LISP) tree (see figure 3).  This tree is 
comprised of a set of operators (nonterminal nodes), which 
are applied to a set of MIDI phrases (terminal nodes). The 
phenotype is a MIDI file (see figure 4). 
 The genotype operators model traditional music 
composition devices.  These include superimposing two 
phrases (polyphony); concatenating two phrases 
(sequence); retrograding a phrase; inverting a phrase; 
transposing a phrase; augmenting a phrase; and 
diminishing a phrase.  
 The system uses two standard genetic operators to 
evolve genotypes: (a) swap-tree crossover (with a variable 
number of crossover points) and (b) random subtree 
mutation (replacing a subtree by a randomly generated 
one).  The selection scheme used is roulette wheel.  Setup 
parameters include population count (e.g., 500), fitness 
threshold (e.g., 0.99), max generations (e.g., 1000), elite 
percentage (e.g., 15%), crossover rate (e.g., 0.5), crossover 
points (e.g., 2), mutation rate (e.g., 0.8), and parameters to 
dynamically adjust genotype tree depth. 

Music Generation Tests 
Several music generation tests were conducted exploring 
different possibilities.  To reduce the number of variables, 
we instructed NEvMuse to create variations of a single 
piece, namely J.S. Bach's Invention #13 in A minor (BWV 
784).  Thus, we evaluated five music critics: 

(A) Popular vs. Unpopular: Fitness was determined by a 
static ANN trained to recognize popular vs. unpopular 
music (see previous experiment). 
(B) Actual vs. Random Music: Fitness was determined by 
a static ANN trained with actual music (“popular” corpus) 
vs. random music (generated off-line by NEvMuse via 
random fitness assignment). 
(C) Actual vs. Artificial Music: Fitness was determined 
by a dynamic ANN that was trained during evolution.  
Initially, the ANN was trained with an actual vs. random 
music corpus (same as B).  The ANN was then retrained at 
the end of each generation; the training corpus was 
“bootstrapped” by adding the latest population into the 
random corpus.  Evolution stopped when the ANN training 
error became too large, i.e., the ANN could not 
differentiate between actual and generated music. 
(D) Mean Square Error (MSE): Fitness was determined 
by calculating the MSE between a genotype’s features 
(slope and R2 values) and the features of a target piece.  In 
other words, high fitness was assigned to genotypes with 
statistical proportions similar to the target piece. 
(E) Random: Fitness was determined by a random number 
generator (for control purposes). 
For melodic genes, we explored three choices: 
(1) Original Notes: Melodic genes were all notes in the 
original piece. 
(2) Minor Scale: Melodic genes were half notes, quarter 
notes, 8th notes, and 16th notes in the A minor scale. 
(3) 12-Tone Scale:  Melodic genes were half notes, quarter 
notes, 8th notes, and 16th notes in the chromatic scale. 
Below, we use the notation x.n to refer to a system 
configuration incorporating music critic x (where x may be 
A, B, C, D, or E), and melodic gene choice n (where n may 
be 1, 2, or 3). 

Results and Discussion 
NEvMuse autonomously “composed” many variations of 
BWV 784, which a wide variety of listeners have 
informally judged as aesthetically pleasing.  
 It should be noted that, ultimately, this experiment is a 
performance test of our power-law based metrics.   Any 
imperfections in the generated music correspond to 
deficiencies in how the metrics model music aesthetics.  
Thus, the generated music samples provide a sonification 
of these deficiencies; they are invaluable in refining the 
metrics (see http://www.cs.cofc.edu/~manaris/nevmuse).      
 In terms of aesthetics, configurations D.1, C.1, B.1, and 
A.1 performed well, probably in this order.  Surprisingly, 
even configuration E.1 sometimes produced interesting 
pieces.  (Again, “1” means original notes.)  We believe this 
is because the melodic genes effectively implement a 
probabilistic scheme: repeated notes (e.g., tonic, 5th, minor 

3rd) in the original piece have more chances of appearing 
in genotypes. 

 
 

Figure 4.  Score phenotype of sample genotype  
shown in figure 3 (excerpt). 

(+ (+ (retro (+ (+ n(16,18) n(21,22)) (+ 
n(37,38) (+ (+ (+ (retro (+ (+ (+ n(12,14) 
n(11,13)) n(12,14)) n(13,16))) n(0,2)) 
n(95,98)) ... 

 
Figure 3.  S-expression (LISP) tree genotype sample.  

(‘+’ stands for concatenation, ‘retro’ for retrograde, and 
‘n(x,y)’ for “melodic gene” notes x through y). 



 In terms of effectiveness, critic C is the only critic that 
produced relatively interesting results with gene types 2 
and 3.  We suspect, critic A was less effective because the 
ANN was trained to classify between two types of actual 
music, whereas NEvMuse’s early populations do not 
resemble actual music; critic B was less effective because 
the ANN is static; critic D was less effective because it 
rewarded statistical similarity with a single piece (as 
opposed to many pieces by the ANN-based critics). This 
suggests that the ANN “bootstrapping” approach is very 
promising for EC composition.   

An Aesthetic Judgment Experiment 
An experiment was conducted to compare the aesthetic 
judgment of an MSE-based artificial music critic to that of 
23 human subjects recruited from undergraduate 
psychology classes (6 male, 17 female; age 18-22; 0-14 
years of private music lessons).  Both artificial and human 
participants rated J.S. Bach’s Invention #13 in A minor 
(BWV 784) and 17 variations generated by NEvMuse (see 
http://www.cs.cofc.edu/~manaris/nevmuse).  Two of these 
variations were created to be “unpleasant”, for comparison.  
 Barrett and Russell (1999) describe pleasantness and 
activation “as basic and universal dimensions of affect”. 
Our human participants provided continuous ratings of 
pleasantness and activation, while listening to the music.  
This was done by moving a computer cursor on a two-
dimensional space with emotion labels around the 
periphery, e.g., “happy”, “serene”, “calm”, “lethargic”, 

“sad”, “stressed”, and “tense” (Barrett and Russell, 1999; 
Schubert, 2001). Subjects were carefully instructed to 
report their own feelings rather than their judgments of 
composer or performer intent. 
 The artificial critic provided aesthetic judgments by 
calculating the similarity between each variation and BWV 
784, using the MSE approach (see previous section).  In 
particular, the 15 “pleasant” variations were assigned high 
aesthetic values (i.e., low MSE ranging from 0.0086 to 
0.0644); whereas the two “unpleasant” variations were 
assigned the lowest aesthetic values (i.e., highest MSEs of 
0.1515 and 0.1685, respectively).  

Results and Discussion 
Results were analyzed using hierarchical linear modeling 
(HLM 6.0, Scientific Software International), with 
variations over time as level-1 variables, and participant 
characteristics as level-2 variables.  
 The interaction of time and MSE was highly predictive 
of pleasantness (p < 0.001), as well as of activation (p < 
0.001). These interactions reflect the fact that the changes 
in ratings over time were different for the original and the 
variations, especially the two “unpleasant” ones (see figure 
5). Additional significant predictors in the activation model 
were the separate variables of time (activation decreasing 
over time, p < 0.001) and MSE (increasing as MSE 
increased, p = 0.034). Pearson correlations, with MSE 
calculated on data averaged over time and over 
participants, were –0.620 for pleasantness and 0.747 for 
activation. Thus, the aesthetic judgment of the artificial 
music critic was a strong predictor of both pleasantness 
and activation ratings of human listeners; this relationship 
emerged in spite of large differences between participants, 
which were highly significant in HLM models.  This 
further confirms the aesthetic relevance of the considered 
power-law metrics. 

Conclusion 
We have described a corpus-based approach to music 
analysis and composition involving (a) music critics 
utilizing power-law metrics, which may be trained on large 
music corpora; and (b) an evolutionary music composer 
that utilizes such music critics as fitness functions.   
 This approach has obvious implications for intelligent 
music retrieval tasks, such as identifying music similar to a 
set of favorite songs.  One possibility is a music search 
engine based on aesthetic similarity.  For example, see a 
demo at http://www.cs.cofc.edu/~manaris/music-search. 
 Finally, the use of a robust, adaptive and flexible method 
such as genetic programming, together with a mechanism 
of internal evaluation based on examples of “good” 
artifacts, supports the generation of new music themes.  
Tools based on this framework could be utilized by human 
composers as cognitive prostheses to help generate new 
ideas, to overcome “writer’s block”, and to explore 
compositional spaces. 

 
Figure 5. Plots of mean self-reported activation (n = 23) 
over time, recorded during J.S. Bach's Invention #13 in  

A minor (BWV 784) and 17 variations.   
Note the two “unpleasant” variations (F3 and F4). 
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